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Atomic structures of Al-Co-Cu decagonal quasicrystals (QCs) are investigated using empirical 
oscillating pair potentials (EOPP) in replica exchange molecular dynamic (MD) simulations that 
we enhance by Monte Carlo (MC) swapping of chemical species. Predicted structures exhibit 
planar aperiodic decagonal tiling patterns, and either 4 or 8Å periodicity along the perpendicular 
direction. We then recalculate the energies of promising structures using first-principles density 
functional theory (DFT), along with energies of competing phases. Although we find that our 𝜏-
inflated sequence of QC approximants are energetically unstable at low temperature by at least 8 
meV/atom, we extend our study to finite temperatures by calculating harmonic vibrational 
entropy as well as anharmonic contributions that include chemical species swaps and tile flips. 
Our results suggest that the Al-Co-Cu quasicrystal phase is entropically stabilized above 
temperatures in the range 600-800K, and that it decomposes into ordinary (though complex) 
crystal phases at low temperatures, including a partially disordered B2-type phase. Finally, we 
discuss the influence of density and composition on QC phase stability, and we compare the 
structural differences between Co-rich and Cu-rich quasicrystals.	
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Fig.2: Simulated Cu-rich structure. 6.2Å 
tiling outlines hexagon, boat and 20Å 
“Burkov decagon”. Inset shows no 
alternation of layers with net 4Å vertical 
periodicity.	

Fig.1: Simulated Co-rich structure. 4.7Å 
tiling outlines pentagonal bipyramid 
motifs. Inset shows alternation of flat and 
puckered layers with net 8Å vertical 
periodicity.	
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We evaluate from first principles formation enthalpies of phases in the Al-Mn-Pd ternary alloy 
system, taking into account all crystal structures as reported in the assessed phase diagrams of the 
ternary and its binary alloy subsystems (Al-Mn, Al-Pd, and Mn-Pd), as well as additional reported 
or hypothetical structures [1]. We propose several corrections of the current Al-Mn binary 
diagram, including proposal for previously unreported low-temperature stable AlMn2 phase. In 
the ternary Al-Mn-Pd system, we find an icosahedral approximant with 552 atoms/cell 
spontaneously formed in atomistic simulations to be stable down to zero K temperature, and even 
larger 2338-atom approximant to be unstable by mere 4 meV/atom. The structure building blocks 
of these approximants, presumably shared with icosahedral phase, are pseudo-Mackay clusters, 
and Al12Pd icosahedra. We discuss the discovered icosahedral structure in the context of the 
preexisting established models: 6D Katz-Gratias [2], Quandt&Elser [3], and also experimentally 
observed structure in AlPdCrFe system based on the same building blocks [4], plus the Henley’s 
canonical-cells tiling geometry [5]. 
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Boron (B) and aluminum (Al) belong to the same group 13 in the periodic table and are next 
to each other, so the size dependence of the cluster orbital energies of the same cluster structure 
have similar shapes. By adjusting the energy and size, they overlap very well as shown in Fig.1 
[1]. Fig. 1 is for a 13 atoms icosahedral cluster with a central atom, and only the size of the stable 
cluster is different (two vertical lines).	Because HOMOs are bonding and antibonding orbitals for 
Al and B, the cluster structures are stable and unstable, respectively. The origin of these is 
considered to be that in B, there is no 1p orbital below the 2p orbital, so the 2p and 2s orbitals are 
almost the same size, whereas in Al, there is a 2p orbital below the 3p orbital, so the 3p orbital is 
larger than the 3s orbital. 
 On the other hand, in icosahedral cluster solids, the B systems (approximants) is a 
semiconductor and is difficult to metalize due to self-compensation [2]. In the Al systems 
(quasicrystals and approximants), several dozen phases, except for Al-Ru-Si 1/0-approximants 
[3], are all metals and are difficult to become semiconductors [4]. What is the origin of this 
difference? 
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Fig.1: Cluster size dependences of orbital 
energies for B13

− (blue line) and Al13
− (red line) 

icosahedral clusters. Two axes are normalized, 
that is, energy and size axes for B are reduced 
and expanded, respectively, as the cross points 
between 1fb and 2p orbitals coincide at the same 
position and each line overlaps as much as 
possible. Vertical lines show the most stable size 
of B13

− and Al13
− [1]. 
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High-entropy alloys, HEAs [1] are metallic systems composed of 4, 5 or more principal elements 
in equimolar or near-equimolar concentrations, where a solid solution on a simple lattice (bcc, 
fcc, hcp) is stabilized as the only or the main phase in the material. The aim of this contribution 
will be to highlight both the basic-science as well as the applied side of these alloys. 
 
Our experimental investigations into the Co-Cr-Fe-Mn-Ni high-entropy alloy [2] were conducted 
on a high-quality non-equiatomic material grown by the Czochralski method. As the material is 
homogenous on the microscale (SEM elemental mapping) and sufficiently homogenous on the 
nanoscale without short-range ordering (APT, HAADF STEM and EELS), it can be taken to be 
a prototype of an “ideal” high-entropy alloy – one where a single solid solution with no deviations 
from complete randomness is present. From the viewpoint of magnetism, we are dealing with an 
unusual system, which is at the same time random, contains several types of magnetic moments, 
is a concentrated magnetic system (all the elements are magnetic) and is frustrated (contains both 
AFM and FM interactions). Instead of long-range magnetic order, a spin freezing transition occurs 
at 𝑇f ≈ 20 K to a spin-glass-like state. In this asperomagnetic state, the system is non-ergodic, 
which can be demonstrated by zfc-fc susceptibility splitting, shift of the cusp in AC susceptibility 
with frequency, ultra-slow decay of thermoremanent magnetization or the thermal memory effect. 
 
In contrast, the AlCoFeNiCux (x = 0.6–3.0) series of high-entropy alloys [3] is far from “ideal” 
HEAs as the samples exhibit both nanostructure as well as a multiphase microstructure. The 
materials belong to a subclass of high-entropy alloys [4], which might find potential applications 
as soft-magnetic materials in low-frequency AC applications such as transformers. At x = 2.0, the 
alloy exhibits a low coercivity of 650 A m-1, a decent saturation polarization of 0.55 T, as well as 
zero magnetostriction λs = 0. The zero magnetostriction is a consequence of the three-phase 
microstructure and could in the future lead to »supersilent« soft-magnetic materials – materials 
which could be used at 50 or 60 Hz without emitting annoying humming sounds. 
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Since the first discovery of a quasicrystal by Shechtman et al. [1], approximately 100 stable 
quasicrystals have been identified [2,3]. While transmission electron microscopy is a powerful 
tool to determine the existence of quasicrystal phases, the experiment is much more time- and 
effort-consuming than powder x-ray diffraction, which is rapid as well as automatic. To facilitate 
the search for novel quasicrystals, it is thus desired to establish a reliable phase-identification 
technique from powder patterns even if the quasicrystals exist in the form of multiphase mixtures. 
In this study, we successfully identified a previously unknown Al–Si–Ru icosahedral quasicrystal 
from multiphase powder patterns using deep learning technologies. Deep learning models were 
trained using artificially generated powder diffraction patterns of multiphase mixtures and could 
determine the presence/absence of icosahedral phases with an accuracy greater than 92% from 
the actual powder patterns. Using this trained model, we screened 440 powder patterns 
accumulated in the laboratory, leading to the discovery of the new icosahedral quasicrystal. 
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